

УДК 621.73

Скрябин С.А.¹, Швец Л.В.² ¹ НПЦ "Ухналь". Украина, Киев. ² Винницкий Государственный аграрный университет. Украина, Винница

ИССЛЕДОВАНИЕ ТЕЧЕНИЯ МЕТАЛЛА ПРИ ВАЛЬЦОВКЕ ЗАГОТОВОК В ОЧАГЕ ДЕФОРМАЦИИ, С УЧЕТОМ РАЗВИТИЯ ДЕФОРМАЦИИ ВО ВРЕМЕНИ

Анотація

У статті описаний метод дослідження течії металу у осередку деформації при вальцюванні заготівель об'ємним деформуванням, з урахуванням розвитку деформації в часі.

Abstract

Method of metal flow research up in deformation zone when rolling the storage for the threedimensional warping, with accounting for deformation developments for a length of time, is described in article. При разработке технологических процессов обработки металлов давлением возникают вопросы по определению усилий, затрат энергии, выбору оптимальных технологических параметров деформации, определению неравномерности деформации и др. Особое место в теории прокатки занимают вопросы перемещения металла в очаге деформации. Развитие вальцовки требует раскрытия закономерностей и физической сущности явлений, протекающих при деформировании металла в очаге деформации.

Работа выполнялась в соответствии с "Державною комплексною програмою розвитку

авіаційної промисловості України до 2010 року". Затверджена постановою Кабінету Міністрів України від 12.12.2001 р., № 1665-25, п. 6.1.3. "Нові технології та матеріали, стандартизація, системи якості, нормативне забезпечення, виробництво та ремонту авіаційної техніки".

Актуальность разработки и внедрения малоотходных технологических процессов штамповки поковок из алюминиевых сплавов на предприятиях авиационной промышленности, обусловлена значительным применением в изделиях отрасли этих сплавов и задачами по совершенствованию металлосберагающих технологий.

Данная работа является продолжением исследований описанных в опубликованных источниках [1-4]. За основу при теоретическом исследовании процесса течения металла при объемном деформировании заготовок в калибрах, был взят метод описанный в этих работах. Задача по исследованию течения металла в очаге деформации решается поэтапно: упругая задача как первое приближение к упруго-пластической, упругопластическая задача для малых пластических деформаций. Характер течения металла в калибрах описан с помощью метода конечных разностей и переменного параметра.

В качестве примера характеризующего течения металла в очаге деформации при вальцовке заготовок в очаге деформации, с учетом развития деформации во времени, рассмотрим вальцовку заготовок с размерами Ø 25 × 150 мм из алюминиевого сплава AK6 в овальном калибре, имеющего размеры: высота 13 мм, ширина 29 мм, радиус калибра 20,5 мм, рабочий радиус валков 66,5 мм, зазор между валками 1,0 мм. Температура вальцовки 450°С. Скорость вращения валков 0,2 м/с.

Угол контакта вальцуемой заготовки с инструментом определялся по формуле

$$\alpha = \arccos\left(1 - \frac{2R_3 - \Delta h}{2R_p}\right) =$$
$$= \arccos(0,9022) = 0,4458, \tag{1}$$

где R_3 — радиус заготовки, мм; R_p — рабочий радиус валков, мм; h — абсолютное обжатие, мм.

Временные промежутки деформирования заготовки определялись по формуле (2), табл. 1

$$t = 10^{-3} \left(\frac{R_p \cdot \alpha}{v_e} \right) = 10^{-3} \left(\frac{66, 5 \cdot 0, 4458}{0, 2} \right) = 0,145, \quad (2)$$

где ϑ — скорость вращения валков, м/с.

Таблица 1

Временные промежутки деформирования заготовки

α	5°	10°	15°	20°	25°
t _i , c	0,029	0,058	0,087	0,1160	0,1450

Аналогично находятся и другие промежутки деформаций во времени.

Значения угла контакта в поперечном сечении очага деформации определялись по формуле (3), табл. 2

$$\varphi_{i} = \frac{\upsilon_{e} \cdot t_{i} \left(1 - \frac{\Delta n}{2R_{\kappa}}\right)}{R_{p} \cdot \alpha}, \qquad (3)$$

где $R_{\rm \kappa}$ — радиус калибра, мм.

Таблица 2

Значения угла контакта в поперечном сечении очага леформации

деформации								
t _i , c 0,029 0,0		0,058	0,087	0,1160	0,1450			
$\mathbf{\phi}_i$	0,1312	0,2624	0,3936	0,5248	0,6561			

Длины дуг поперечного сечения зоны контакта для каждого значения текущего угла φ_I определялись по формуле (4), табл. 3

 $l_{ol} = R_{\rm D} \phi_{\rm I}$

Длины дуг поперечного сечения зоны контакта для каждого значения текущего угла ф

$\mathbf{\phi}_i$	0,1312	0,2624	0,3936	0,5248	0,6381
\mathbf{R}_k	20,5	20,5	20,5	20,5	20,5
$l \phi_i$	2,689	5,379	8,068	10,758	13,450

Коэффициенты деформаций вдоль дуги контакта определяются по формулам (5), табл. 4

$$K_{x} = \frac{b_{oe}^{(1)}}{2R_{3}}; \ K_{y} = \frac{h_{oe}^{(1)}}{2R_{3}}$$
(5)

Таблица 4

Коэффициенты деформаций вдоль дуги контакта

t _i ,c	0,29	0,085	0,087	0,1160	0,1450
K _x ⁽ⁱ⁾	1,048	1,092	1,140	1,188	1,240
K _y ⁽ⁱ⁾	0,876	0,7352	0,6320	0,5640	0,5400

Изменение ширины овального калибра в зависимости от времени деформирования определялись по формуле (6), табл. 5

$$b_{oe} = \frac{(b_{oe} + 2R_{\kappa})}{\alpha \cdot R_{p}} \cdot v_{e} \cdot t_{i} + 2R_{s}, \qquad (6)$$

где b_3 — ширина овального калибра, мм; t_i — время деформирования, с.

Таблица 5

Ширина овального калибра в зависимости от времени деформирования

t _{<i>i</i>} , c	0,029	0,058	0,087	0,1160	0,145
$\mathrm{B}_{\mathrm{OB}}^{(i)}$	26,2	27,3	28,4	29,7	31,0

1/2008

Площадь контакта в каждый промежуток времени деформирования определяется по формуле (7), табл. 6.

$$F_{\kappa}^{(i)} = R_{\kappa} \frac{\upsilon_{e} \cdot t_{i}}{R_{p}} [(R_{p} + R_{\kappa}) \frac{\varphi \upsilon_{e} \cdot t_{i}}{2R_{p} \cdot \alpha} - R_{\kappa} \sin(\frac{\varphi \upsilon_{e} \cdot t_{i}}{2R_{p} \cdot \alpha})]$$
(7)

Таблица 6 Площадь контакта в каждый промежуток времени

Шаг в направлении координатных осей определяется по формулам в:

направлении оси ОХ (8), табл. 7

$$h_{\alpha_{i}}^{(i,j)} = R_{3}K_{x}^{(i)}(\sin\beta_{i+1,j} - \sin\beta_{i,j+1}); \quad (8)$$

направлении ОУ (9), мм

$$h_{\alpha 2}^{(i,j)} = R_3 K_y^{(i)} (\cos \beta_{i,j+1} - \cos \beta_{i+1,j})$$
(9)

Граничные условия на поверхности деформируемой заготовки вдоль дуги контакта определяются по формулам (10, 11), табл. 7

$$u_{i,j+1}^{(z)} = R_3(1 - K_x^{(i)}) \sin \beta_{i,j+1}; \ u_{i+1,j}^{(z)} = R_3(1 - K_x^{(i)}) \sin \beta_{i+1,j}$$
(10)

Таблица 7 Шаг в направлениях координатных осей ОХ и ОУ

t, c	t = 0,029							
<i>i</i> , <i>j</i>	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
$\mathbf{h}_{\alpha 1}{}^{(ij)}$	3,3902	3,1597	2,7130 1	2,0815	1,3086	0,4467		
$h_{\alpha 2}^{(ij)}$	0,3733	1,0939	1,7399	2,2677	2,6411	2,8338		
t, c			t = 0,	058				
<i>i</i> , <i>j</i>	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
$h_{\alpha 1}^{(i,j)}$	3,5326	3,2923	2,8268	2,1703	1,3635	0,4654		
$h_{\alpha 2}^{(i,j)}$	0,3133	0,9180	1,4424	1,9032	2,2166	2,3783		
t, c	t = 0,087							
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
$h_{\alpha 1}^{(ij)}$	3,6879	3,4371	2,9511	2,2657	1,4235	0,4858		
$h_{\alpha 2}^{(i,j)}$	0,2693	0,7891	1,2399	1,6360	1,9054	2,044		
t, c			t = 0,	116				
<i>i</i> , <i>j</i>	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
$h_{21}^{(ij)}$	3,8431	3,5818	3,0753	2,3611	1,4854	0,5063		
$h_{22}^{(ij)}$	0,2403	0,7042	1,1202	1,4600	1,7004	1,8245		
t, c	t = 0,145							
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
$h_{21}^{(ij)}$	4,014	3,7386	3,2099	2,4645	1,5483	0,5284		
$h_{22}^{(ij)}$	0,2301	0,6733	1,0725	1,3978	1,6281	1,7469		

$$v_{i,j+1}^{(z)} = R_3(1 - K_y^{(i)}) \cos \beta_{i,j+1}; \ v_{i+1,j}^{(z)} = R_3(1 - K_y^{(i)}) \cos \beta_{i+1,j} \ (11)$$

Таблица 8

Значения граничных условий на поверхности деформируемой заготовки вдоль дуги контакта l_{qi}

t _i ,c	$t_1 = 0,029$							
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
u_{ij+1}	0,0000	-0,1552	-0,3000	-0,4242	-0,5136	-0,5754		
$u_{i+1,j}$	-0,1552	-0,3000	-1,4242	-0,5196	-0,5754	-0,6000		
$v_{i,j+1}$ ®	1,5500	1,4971	1,3423	1,0960	0,7750	0,4011		
$v_{i+1,j}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1,4971	1,3423	1,0960	0,7750	0,4011	0,000		
t _i ,c			$t_2 =$	0,058				
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
u_{ij+1}	0,000	-2976	-05750	-0,8131	-0,9959	-1,1107		
$u_{i+1,j}$	-0,2976	-0,575	-0,8131	-0,9959	-1,1107	-1,150		
$v_{i,j+1}^{\mathbb{R}}$	3,3100	3,1971	2,8664	2,3405	1,155	0,8566		
$v_{i+1,j}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	3,1971	2,8664	2,3405	1,155	0,8566	0,0000		
t _i ,c			$t_3 =$	0,087				
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
u_{ij+1}	0,000	-0,4528	-0,8750	-1,2374	-1,5155	-1,6903		
$u_{i+1,j}$	-0,4528	-0,8750	-1,2374	-1,5155	-1,6903	-1,7500		
$v_{i+1,j}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	4,4431	3,9836	3,2526	2,3000	1,19048	0,0000		
$v_{i,j+1}$ ®	4,6000	4,4431	3,9836	3,2526	2,300	1,19048		
t _i ,c			$t_4 =$	0,116				
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
u_{ij+1}	0,000	-0,6081	-1,1750	-1,6616	-2,0351	-2,2698		
$u_{i+1,j}$	-0,6081	-1,175	-1,6616	-2,0351	-2,2698	-2,3500		
$v_{i,j+1}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	5,4500	5,2641	4,7197	3,8536	2,7260	1,4106		
$v_{i+1,j}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	5,2641	4,7197	3,8536	2,7260	1,4106	0,0000		
t _i ,c	$t_5 = 0,145$							
i, j	(1;1)	(3;3)	(5;5)	(7;7)	(9;9)	(11;11)		
u_{ij+1}	0,0000	-0,7764	-1,500	-2,1213	-2,5980	-2,8977		
$u_{i+1,j}$	-0,7769	-1,500	-2,1213	-2,598	-2,8577	-3,0000		
$v_{i+1,j}^{\mathbb{R}}$	5,5539	4,9795	4,0658	2,8750	1,4881	0,0000		
$v_{i,i+1}^{\mathbb{R}}$	5,7500	5,5539	4,9795	4,0658	2,8750	1,4881		

Течение металла в очаге деформации при вальцовке заготовок объемным деформированием, с учетом скоростей перемещения узлов координатной сетки за определенный промежуток времени (рис. 1), сопоставимо с изменением "пластических волн" в очаге деформации во времени.

На рис. 1 представлен характер изменения "пластических волн" в очаге деформации при вальцовке заготовок в овальном калибре с размерами описанными выше (вид торца заготовки, первое приближение).

PESYNLTATLI MCCNEAJOBAHINN HOBLIX IIPOLJECCOB, MATEPHANOB, MAQENHM

32

Рис. 1. Изменение "пластических волн" в очаге деформации с учетом развития деформации во времени: $\begin{pmatrix} 1 & 1 \\ 1 & 0 & 0.0145 \\ 1 & 0 & 0.0145 \\ 1 & 0 & 0.0200 \\ 1 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0 & 0.0200 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 &$

 $\begin{array}{l} (1\ -\ 1)\ -\ 0,0145\ c;\ (2\ -\ 2)\ -\ 0,\ 0290\ c;\\ (3\ -\ 3)\ -\ 0,\ 0435\ c;\ (4\ -\ 4)\ -\ 0,\ 0580\ c;\\ (5\ -\ 5)\ -\ 0,\ 0725\ c \end{array}$

На приведенном рисунке показан характер течения металла при вальцовке заготовок в очаге деформации в трехмерной постановке (объемное деформирование), выполненной по методу описанному в работах [2–4] и получившему дальнейшее развитие, заключающееся в учете развития деформации во времени.

Экспериментальная проверка достоверности результатов теоретических и экспериментальных исследований течения металла при вальцовке заготовок объемным деформированием в очаге деформации, с учетом развития деформации во времени подтвердила, что разработанный метод позволяет раскрыть картину перемещения металла как для установившегося (деформация при постоянном обжатии) так и неустановившегося (деформация с нарастающим или убывающим обжатием) процессов горячего деформирования, определить неравномерность деформации в зависимости от соотношения геометрических форм калибра и деформируемой заготовки, найти область возможной концентрации напряжений.

Максимальное расхождение теоретических и экспериментальных исследований при проверке предложенного метода составляет до 10% для третьего приближения, что подтверждает возможность применения этого метода для исследования течения металла в очаге деформации при вальцовке заготовок в калибрах произвольной формы, с учетом развития деформации во времени.

Выводы

1. В работе получили дальнейшее развитие теоретическое и экспериментальное исследования течения металла при вальцовке заготовок объемным деформированием в очаге деформации, с учетом развития деформации во времени. 2. Разработан метод исследования течения металла в очаге деформации при вальцовке заготовок объемным деформированием, с учетом развития деформации во времени. Максимальное расхождение теоретических и экспериментальных исследований при проверке предложенного метода составляет до 10% для третьего приближения, что подтверждает возможность применения этого метода для исследования течения металла в очаге деформации при вальцовке заготовок в калибрах произвольной формы, с учетом развития деформации во времени.

3. Экспериментальная проверка достоверности результатов теоретических и экспериментальных исследований течения металла при вальцовке (прокатке) заготовок при их объемном деформировании в очаге деформации, с учетом развития деформации во времени подтвердили, что разработанный метод позволяет раскрыть картину перемещения металла как для установившегося (деформация при постоянном обжатии) так и неустановившегося (деформация с нарастающим или убывающим обжатием) процессов горячего деформирования, определить неравномерность деформации в зависимости от соотношения геометрических форм калибра и деформируемой заготовки, найти область возможной концентрации напряжений.

Литература

1. Скрябин С.А. Исследование, разработка и внедрение процесса вальцовки заготовок из алюминиевых сплавов. — Дисс. канд. техн. наук: 05.16.05. — М., 1978. — 216 с.

2. Скрябин С.А., Скрябин К.С. Теоретическое решение объемной задачи по исследованию течения металла при деформации заготовок в калибрах // Вестник НТУУ "Киевский политехнический институт", 2003. – № 44. – С. 56–60.

3. Скрябін С.О., Скрябін К.С. Застосування методів скінченних різниць і змінного параметру для визначення плину металлу під час объємного деформування заготовок у калібрах. — Вінніця: Вісник Вінницького політехничного інстітуту, 2004. — № 1. — С. 86—95.

4. Скрябин С.А., Швец Л.В., Чайка С.Д. Исследование течения металла в переходной и установившейся зонах при вальцовке заготовок в очаге деформации, с учетом развития деформации во времени // Технологические системы, 2006. — № 4. — С. 32—38.