1/2012

УДК 621.721.052:539.4.014

Перепічай А.О., Прохоренко В.М., Зворикін К.О. Національний технічний університет України "Київський політехнічний інститут". Україна, м. Київ

СКІНЧЕННО-ЕЛЕМЕНТНЕ МОДЕЛЮВАННЯ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ ВІД ЗВАРЮВАННЯ КІЛЬЦЕВИХ ШВІВ ТЕХНОЛОГІЧНИХ ПАРОПРОВОДІВ

Анотація

В роботі розглядаються результати скінченно-елементного моделювання залишкового напружено-деформованого стану в зоні кільцевих зварних стиків технологічних паропроводів, зварні шви яких реально можуть бути виконані за двома випадками: 1 — якісно без непровару в корені шва, 2 — з непроваром у корені шва, допустимим за діючими нормами завдовжки до 25% загальної довжини шва і завглибшки до 20% товщини стінки труби. В даній роботі аналізується вплив непровару кореня шва на залишковий напружено-деформований стан паропроводу в зоні кільцевого зварного шва.

Abstract

In this paper the results of finite element simulation of residual stress-strain state in the area of circular welded joints of steam technology, welding seams which can realistically be accomplished in two cases: 1 - quality without lack of penetration into the root of the weld, 2 - with fusions at the root of the weld allowable for the regulations in force up to 25% of the total seam length and depth of up to 20% wall thickness. This paper analyzes the impact of lack of penetration root pass on the residual stress-strain state of the steam in the annular zone of the weld.

Вступ

Для оцінки міцності будь-якої конструкції необхідно мати інформацію про її напружено-деформований стан, особливо за наявності в ній тих чи інших конструктивних або технологічних концентраторів напружень і деформацій [1]. До таких конструкцій відносяться тонкостінні циліндричні оболонки з кільцевими швами, зокрема, технологічні паропроводи, у кільцевих швах яких досить часто виникає технологічний дефект у вигляді непровара кореня шва [2].

Багато технологічних паропроводів на нафтопереробних заводах з непроварами різної довжини в кільцевих зварних стиках на даний час вже відпрацювали проектний термін експлуатації. Періодичним рентгенконтролем кільцевих швів часто виявляються непровари в корені шва різної довжини і тоді постає питання про можливість обґрунтованого продовження на деякий час безпечної експлуатації таких технологічних паропроводів без виконання ремонтних робіт із заміною пошкоджених стиків.

Сподіваємось, що аналіз залишкового напружено-деформованого стану, зумовленого зварюванням кільцевих швів технологічних паропроводів, допоможе в кінцевому підсумку вирішити складну науково-технічну задачу розрахункової оцінки залишкового ресурсу експлуатації паропроводу з виявленими ушкодженими кільцевими стиками або обґрунтованої розробки і застосування рекомендованих технологічних заходів для подальшої безпечної експлуатації паропроводу.

Сучасні інженерно-наукові обчислювальні комплекси на основі використання методу скінченних елементів дають можливості вирішувати з високою точністю задачу про залишковий напружено-деформований стан при зварюванні кільцевих швів на циліндричних оболонках.

Актуальність даної роботи обґрунтована використанням в реальних умовах трубопровідних систем з технологічними непроварами в корені шва. Такі дефекти часто утворюються внаслідок неправильного підбору режиму зварювання або неякісного виконання підготовчих робіт [2].

Непровар в корені шва є широко розповсюдженим явищем, виявляється під час діагностування кільцевих зварних стиків неруйнівним контролем і має різні форми та конфігурації. В нормативній документації існують допуски на експлуатацію конструкцій з непроварами фіксованої глибини та протяжності (табл. 1).

Спираючись на дані нормативної документації [3–6], можна стверджувати, що за певних значень довжини та глибини непровару подальша експлуатація конструкції допускається і тому є необхідним детальний розгляд і аналіз залишкового напружено-деформованого стану від зварювання, який у подальшому передбачається використати для вирішення питання про можливість продовження безпечної експлуатації кільцевого шва паропроводу з обмеженням чи без обмеження терміну. На належному рівні детальний і всебічний розгляд напружено-деформованого стану в оболонці з кільцевим швом може бути виконаний лише на основі скінченно-елементного моделювання такого стану з використанням методу скінченних елементів.

Таблиця 1

Допуски на експлуатацію конструкцій з непроварами в корені зварного шва

Назва нормативного документа	Параметри непровару, який допускається до експлуатації					
	глибина, % від товщини δ	довжина по периметру				
СНиП 3.05.05-84	до 20%, але не більше 3 мм	25%				
СНиП 3.05.03-85	до 10%, але не більше 2 мм	20%				
РД 34.15.027-93	до 10%	20%				
ПН АЭ Г-7-010-89	до 10%, але не більше 2 мм	20%				

Постановка задач дослідження

В роботі ставляться такі задачі дослідження: - здійснити скінченно-елементне моделювання залишкового напружено-деформованого стану в

Рис. 1. Система координат для аналізу напружень та деформацій

Рис. 2. Загальний вигляд та основні розміри зразка труби Ø89×6 мм у поздовжньому перетині стінки

(варіант 1) і з штучним кільцевим "непроваром" у вигляді проточки оболонки в корені шва по всій його довжині;

 побудувати для залишкового стану розподіл всіх компонентів нормальних напружень та лінійних пластичних деформацій, а також їх еквівалентних значень по товщині оболонки в напрямку двох нормалей до неї, проведених у площинах двох поперечних перетинів оболонки по шву і на відстані 9 мм від нього для згаданих вище варіантів 1 і 2 в системі координат *XYZ* (рис. 1, 2);

- на основі отриманих для варіантів 1 і 2 результатів проаналізувати залишковий напружено-деформований стан в зоні кільцевого зварного шва трубопроводу з точки зору впливу непровару в корені шва по всій його довжині на розподіл по товщині труби нормальних напружень та пластичних деформацій;

 за результатами аналізу зробити прогнозні висновки стосовно очікуваного впливу непровару в

> кільцевих зварних стиках технологічних паропроводів на їх подальшу безпечну експлуатацію.

Основна частина

На стадії пре процесорної підготовки моделі створюється необхідна для розрахунку база даних, задається система координат, розробляються геометричні моделі циліндричних оболонок з кільцевим швом для двох варіантів зварювання (з повним проваром та із заданим непроваром у корені кільцевого шва), задаються властивості матеріалу, тип і час аналізу, режим зварювання, граничні умови, створюється сітка скінчених елементів, призначається тип елемента.

Властивості матеріалу — сталі 10: *механічні* — межа плинності $\sigma_T = f(T)$ табл. 2, межа міцності $\sigma_B = 353 \cdot 10^6$ Па, відносне залишкове видовження $\delta = 0,25$,

зоні кільцевого зварного шва технологічного паропроводу Ø89×6 мм із сталі 10, виконаного за двома варіантами — з повним проваром кореня шва

1/2012

модуль Юнга $E=2\cdot10^{11}$ Па, питома вага сталі $\rho=7800$ кг/м³, коефіцієнт Пуассона $\mu=0,3$; *теплофізичні* — коефіцієнт температурного розширення $\alpha=12,4\cdot10^{-6}$ 1/°С, теплопровідність $\lambda=57$ Дж/сек·м·°С, питома теплоємність c=494Дж/°С·м³. Напруження ?у (в напрямку осі Y) у точках на нормалі 1-1 для шва з проваром і з "непроваром" помітно відрізняються (рис. 5) за характером розподілу, максимальною величиною і локалізацією зони їх дії по товщині оболонки.

Таблиця 2

Залежність межі плинності ?Т = f(T) сталі 10 від температури

T, °C	0	500	600	700	800	1000	1200	1400	1500
у _т , МПа	216	216	43	37	26	24	8	4	1,2

Тип і час аналізу: Поєднаний термомеханічний аналіз, з можливістю великих переміщень (Nonlinear Geometry) і автоматичною стабілізацією розсіювання енергії, час аналізу — 400 сек.

Навантаження: рухоме об'ємне джерело теплоти Голдака [7].

Граничні умови: температура на торцях оболонки $+20^{\circ}$ С, задача симетрична відносно середини зварного шва (площина YZ), торці оболонки закріплені від переміщень уздовж осі X (відповідність реальним умовам зварювання стиків паропроводу).

Тип елемента: Неха — об'ємний 8-вузловий елемент для розв'язування поєднаної задачі термопластичності. Для матеріалу зварної оболонки приймали модель пластичності з ізотропним зміцненням.

На рис. З представлено розподіл температури у поздовжньому перетині оболонки через шов у момент переходу дугою через даний поздовжній перетин оболонки та температурний цикл для точки в центрі шва. Отримані дані дають змогу оцінити температурний стан під час зварювання та швидкість охолодження різних ділянок оболонки в околі кільцевого шва. Після розрахунку отримуємо масив значень параметрів напруженодеформованого стану для всіх вузлів сітки.

За результатами розрахунку відібрані і представлені на рис. 4...11 залежності для залишкових нормальних напружень та лінійних пластичних деформацій уздовж нормалей 1-1 та 2-2 до оболонки в межах її товщини (рис. 2).

Зокрема, на рис. 4 для варіантів 1 (з повним проваром шва) і 2 (з "непроваром" у вигляді проточки в корені шва завглибшки 1,2 мм, завширшки 1 мм та завдовжки на всю довжину шва) показано розподіл по товщині циліндричної оболонки залишкових напружень σx в напрямку осі X (уздовж осі оболонки).

Як видно з рис. 4, напруження σx у поперечних перетинах оболонки для точок на нормалях 1-1 і 2-2 мало відрізняються між собою. Це пояснюється невеликою відстанню поперечних перетинів оболонки один від одного і незначним градієнтом напружень σx по координаті *X*. У шві з проваром напруження *бу* розподілені по товщині оболонки синусоїдально з максимальним значенням близько 10 МПа, а у шві з непроваром вони зосереджені у внутрішній частині оболонки з максимумом ~75 МПа над вершиною "непровару". Це зрозуміло, оскільки "непровар" є концентратором напружень.

Рис. 3. Розподіл температури у поздовжньому перетині оболонки через шов (*a*) та температурний цикл точки в центрі шва (*б*)

Рис. 4. Розподіл по товщині оболонки залишкових напружень *ох* (в напрямку осі *X* – уздовж осі оболонки):

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; бх1 — уздовж нормалі 1-1; бх2 — уздовж нормалі 2-2

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; σz1 — уздовж нормалі 1-1; σz2 — уздовж нормалі 2-2

Окружні напруження *σz* (в напрямку осі *Z*) (рис. 6) в оболонці за будь-якого варіанту зварювання (з проваром кореня шва чи без нього) є додатними (розтяг), зростають по мірі наближення точки на нормалі до осі оболонки, досягають максимальних значень на внутрішній поверхні оболонки. Для шва з проваром вони дорівнюють ~+105 МПа, з непроваром ~+205 МПа. Таке збільшення напружень пов'язане з впливом концентратора у вигляді штучного "непровару".

Рис. 5. Розподіл по товщині оболонки залишкових напружень *бу* (в напрямку осі *Y* — в напрямку товщини оболонки):

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з непроваром кореня шва у вигляді проточки) не зафарбований маркер; σу1 — уздовж нормалі 1-1; σу2 — уздовж нормалі 2-2

Рис. 7. Розподіл по товщині оболонки залишкових еквівалентних напружень *бе*:

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; σe1— уздовж нормалі 1-1; σe2— уздовж нормалі 2-2

Розподіл по товщині оболонки залишкових еквівалентних напружень *σе* показаний на рис. 7. Уздовж нормалі 1-1 еквівалентні напруження *σе* досягають максимальних значень ~230 МПа на внутрішній поверхні оболонки для шва з проваром і ~270 МПа для шва з "непроваром". На глибині 2,5...3,5 мм від зовнішньої поверхні вони мають найменші значення ~30 МПа для шва з проваром і ~60 МПа для шва з "непроваром".

1/2012

Залишкові лінійні пластичні деформації єх (уздовж осі Х) у поперечному перетині оболонки по нормалі 1-1 є двозначними (рис. 8). В зовнішній частині оболонки ?х досягають величини ~ -0,005 (укорочення). По мірі переміщення точки уздовж нормалі 1-1 до осі оболонки деформації єх змінюють знак на "+" (видовження) і десь на відстані 2...3 мм від внутрішньої поверхні оболонки досягають значення ~+ 0,006. Після кристалізації розплаву зварювальної ванни пластичні деформації єх мають знак "+" (видовження) по всій товщині оболонки. Поступово зовнішня частина оболонки охолоджується швидше за внутрішню, оскільки тепловіддача із зовнішньої поверхні більша ніж з внутрішньої. Внаслідок цього більше зростає жорсткість в'язей зі сторони зовнішньої частини оболонки, накладених на її внутрішню частину. При подальшому охолодженні внутрішньої частини оболонки пластичні деформації видовження в ній єх поступово збільшуються, зростають напруження розтягу ох, які і зумовлюють пластичне укорочення зовнішньої частини оболонки в осьовому напрямку.

Рис. 8. Розподіл по товщині оболонки залишкових лінійних пластичних деформацій є*х* (в напрямку осі *X* — уздовж осі оболонки):

Пластичні залишкові деформації єу (уздовж осі *Y*) в напрямку товщини оболонки на нормалі 1-1 (рис. 9) для обох випадків зварювання кільцевих швів (з проваром і "непроваром" кореня шва) мають знак "–" (укорочення) на відміну від таких же деформацій на нормалі 2-2, тобто за межами зони розплавленого металу шва. Причина появи такого знаку деформацій єу на нормалі 1-1 полягає в тому, що нормаль 1-1 проходить по шву, де рухається при зварюванні ванна рідкого металу, в якому немає

62

ніякої пластичної деформації, поки він перебуває в розплавленому стані. Після кристалізації рідкого металу в ньому з'являється значне пластичне видовження (пластичні деформації εx і εz) в напрямку осей X і Z. Оскільки об'єм металу при пластичній деформації не змінюється, пластичне видовження уздовж осей X і Z зумовлює утворення пластичної деформації εy зі знаком "–" (укорочення).

Пластичні залишкові деформації єг (уздовж осі Z) (рис. 10) по товщині оболонки на нормалі 1-1 для обох варіантів зварювання кільцевих швів (з проваром і "непроваром" кореня шва) мають знак "+" (видовження) на відміну від таких же деформацій на нормалі 2-2. Причиною такого характеру (видовження замість укорочення) в розподілі даних деформацій, так само як це згадувалось вище, є наявність рідкого розплаву металу у зварювальній ванні, який при подальшому охолодженні після кристалізації починає в окружному напрямку (в напрямку осі Z) пластично видовжуватись, оскільки його температурне укорочення не може реалізуватись з причини накладених на метал зварного

Рис. 9. Розподіл по товщині оболонки залишкових лінійних пластичних деформацій є у (в напрямку осі У— в напрямку товщини оболонки):

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; *єу*1 — уздовж нормалі 1-1; *єу*2 — уздовж нормалі 2-2

шва в'язей (обмежень) зі сторони металу з меншими температурами, який оточує кільцевий шов.

Еквівалентна пластична деформація (рис. 11) при зварюванні шва як з проваром, так і з непроваром кореня практично однакова по товщині оболонки за виключенням зони в околі умовної вершини "непровару". У шві з не проваром в цій зоні еквівалентна пластична деформація приблизно у 2,5 раза більша, що пов'язано з присутністю концентратора напружень і деформацій у вигляді "не-

провару". Це ϵ місце підвищеної небезпеки з точки зору міцності і працездатності кільцевого шва паропроводу.

Викликає неабиякий інтерес розподіл по осі X в залишковому стані окружних напружень σz , які є аналогом розподілу у класичному стиковому з'єднанні поздовжніх напружень у поперечному перетині з'єднання. У зв'язку з нерегулярністю сітки скінченних елементів у поздовжньому перетині оболонки важко було вибрати більш-менш прийнятний прямолінійний шлях для побудови залежності $\sigma z(x)$ і тому за такий шлях взяли відрізок на внутрішній твірній лінії оболонки від точки на осі

Рис. 10. Розподіл по товщині оболонки залишкових лінійних пластичних деформацій *εг* (в напрямку осі *Z* – в окружному напрямку шва):

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; εг1 — уздовж нормалі 1-1; εг2 — уздовж нормалі 2-2

Рис. 12. Розподіл окружних залишкових напружень *σz*(*x*) від осі шва уздовж внутрішньої твірної циліндричної оболонки (додатний напрямок осі *X*)

шва в додатному напрямку осі X. Розподіл напружень $\sigma z(x)$ уздовж цього відрізку показано на рис. 12.

Як видно, епюра на рис. 12 має більш-менш звичний класичний вигляд і не викликає сумнівів відносно її зрівноваженості, хоч це є розподіл напружень лише уздовж однієї лінії, а не по всій площі поздовжнього перетину оболонки в одну сторону від осі шва.

Наостанок, на рис. 13 показано розподіл уздовж згаданої вище внутрішньої твірної залишкових окружних пластичних деформацій $\varepsilon z(x)$. З приводу причин утворення додатних значень цих дефор-

Рис. 11. Розподіл по товщині оболонки залишкових

рис. 11. розподіл по товщині осолонки залишкових еквівалентних пластичних деформацій εε:

для варіанта 1 (з проваром кореня шва) зафарбований маркер; для варіанта 2 (з "непроваром" кореня шва у вигляді проточки) не зафарбований маркер; εе1 — уздовж нормалі 1-1; εе2 — уздовж нормалі 2-2

Рис. 13. Розподіл окружних залишкових пластичних деформацій *єг*(*x*) від осі шва уздовж внутрішньої твірної циліндричної оболонки (додатний напрямок осі *X*)

PESYNLTATLI MCCNEQOBANNA HOBLIX MPOLLECCOB, MATEPHANOB, M3QENNIÀ

мацій у шві мова йшла вище в даній роботі. Границя зони пластичного деформування по даному компоненту пластичної деформації в сторону від кільцевого шва складає приблизно 30 мм, що повною мірою узгоджується з наведеним вище на рис. 11 розподілом окружних напружень.

Висновки

1. В цілому напружено-деформований стан у внутрішній частині паропроводу у точках на нормалі 1-1 є приблизно у 2...3 рази більшим порівняно із зовнішньою частиною, що можна пояснити більш швидким охолодженням зовнішньої частини оболонки порівняно з внутрішньою і поступовим зростанням при подальшому охолодженні загальної жорсткості в'язів для внутрішньої частини оболонки зі сторони зовнішньої.

2. Наявність в корені кільцевого шва концентратора у вигляді кільцевої проточки на внутрішній поверхні труби завширшки 1 мм і завглибшки 1,2 мм, яка моделює непровар кореня шва, збільшує на нормалі 1-1 у внутрішній частині труби жорсткість (об'ємність) напружено-деформованого стану, що спостерігається у вигляді відповідних сплесків на кривих для всіх представлених напружень і пластичних деформацій саме у внутрішній частині труби.

3. Не дивлячись на невелику товщину стінки паропроводу, залишковий напружено-деформований стан оболонки є тривісним і у внутрішній її частині близьким до плоско-деформованого, що можна пояснити суттєвим зростанням жорсткості оболонки при зменшенні її діаметра.

4. Характерною особливістю напружено-деформованого стану на нормалі 1-1 в паропроводі з кільцевою проточкою є значне збільшення всіх компонентів тензора напружень і пластичних деформацій в околі "вершини" кільцевої проточки, зокрема: $\sigma x - 3 + 280$ до + 380 МПа, $\sigma y - 3 - 10$ до + 80 МПа, $\sigma z - 3 + 100$ до + 200 МПа, $\varepsilon x - 3 + 0,0026$ до + 0,0060, $\varepsilon y - 3 - 0,016$ до -0,013, $\varepsilon z - 3 + 0,020$ до + 0,024.

5. Вказані вище зміни значень компонентів напружень в околі вершини "непровару" за розрахунками відповідно до критерію пластичності Губера-Мізеса збільшують радіус гіперповерхні текучості в 1,9 раза, що зумовить зменшення майже у 4 рази розміру поправки Ірвіна [8] на пластичну зону біля вершини непровару і буде сприяти переходу металу зварного шва в цьому місці із пластичного стану у крихкий з можливістю крихкого руйнування за силовим критерієм Ірвіна [8].

Література:

1. *Николаев Г.А.* Надежность сварных соединений и конструкций. — М., "Машиностроение", 1967. — 227 с.

2. Волченко В.Н. Контроль качества сварки. Учебное пособие для машиностроительных вузов. — М.: "Машиностроение", 1975. — 328 с.

3. *СНиП 3.05.05-84* "Технологическое оборудование и технологические трубопроводы".

4. *СНиП 3.05.03-85* "Тепловые сети".

5. *РД* 34.15.027-93 "Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций".

6. *ПН АЭ Г-7-010-89* "Оборудование и трубопроводы атомных энергетических установок сварные соединения и наплавки правила контроля".

7. Скиба В.Ю., Корниенко Е.Е., Веселов С.В., Плотникова Н.В. Определение рациональных режимов электродуговой сварки стали З0ХГСА с помощью конечно-элементного моделирования в программном комплексе SYSWELD. НГТУ, 2004. — 10 С.

8. *Броек Д.* Основы механики разрушения: пер. с англ. / Д. Броек. — М.: В — Высш. шк., 1980. — 368 с.

9. John A. Goldak. Computational Welding Mechanics / John A. Goldak. Mehdi Akhlaghi – Springer, 2007. – 323 c.

64